
Dynamically Tuning the
JFS Cache for Your Job Sjoerd Visser

Dynamically Tuning the JFS Cache for Your Job Sjoerd Visser

November 13, 2009 / page 2

The purpose of this presentation is the explanation of:

IBM JFS goals: Where was Journaled File System (JFS) designed for?

JFS cache design: How the JFS File System and Cache work.

JFS benchmarking: How to measure JFS performance under OS/2.

JFS cache tuning: How to optimize JFS performance for your job.

What do these settings say to you?

[E:\]cachejfs

 SyncTime: 8 seconds
 MaxAge: 30 seconds
 BufferIdle: 6 seconds
 Cache Size: 400000 kbytes
 Min Free buffers: 8000 (32000 K)
 Max Free buffers: 16000 (64000 K)
Lazy Write is enabled

Do you have a feeling for this? Do you understand the dynamic cache behaviour of the JFS
cache? Or do you just rely on the “proven” cachejfs settings that the eCS installation presented
to you? Do you realise that the JFS cache behaviour may be optimized for your jobs?

Dynamically Tuning the JFS Cache for Your Job Sjoerd Visser

November 13, 2009 / page 3

Where was Journaled File System (JFS) designed for?

1986 Advanced Interactive eXecutive (AIX) v.1 based on UNIX System V. for IBM's RT/PC.

1990 JFS1 on AIX was introduced with AIX version 3.1 for the RS/6000 workstations and
servers using 32-bit and later 64-bit IBM POWER or PowerPC RISC CPUs.

1994 JFS1 was adapted for SMP servers (AIX 4) with more CPU power, many hard disks
and plenty of RAM for cache and buffers.

1995-2000 JFS(2) (revised AIX independent version in c) was ported to OS/2 4.5 (1999) and
Linux (2000) and also was the base code of the current JFS2 on AIX branch.

Just for timeline comparison:

1989 High Performance File System (HPFS) was released with 16 bits OS/2 version 1.2.
HPFS supported partitions up to 64 GiB and file sizes up to 2 MiB. The maximal HPFS cache
was 2 MiB, but Microsofts HPFS386 cache supported "all available memory".

1990 Microsoft Windows 3.0 used the 8.3 File Allocation Table (FAT) file system.

1994 Windows NT 3.1 (-W2K!) contained a pinball.sys driver to use HPFS instead of FAT.

1995 Windows NT v. 3.51 promoted NTFS1 user rights. Windows 9x used vFAT and FAT32.

1999 Windows NT 4 and successors used NTFS.

Dynamically Tuning the JFS Cache for Your Job Sjoerd Visser

November 13, 2009 / page 4

Two major FS features kept AIX servers up and running:

1. A Logical Volume or Storage Manager that was able to mount new partitions and
extend existing parts of the file system (logical volumes) without a reboot.

2. A Journaled File System that can rapidly restore complex directory structures after a
crash.

Note that a "stupid" chkdsk/fschk on FAT, HPFS or EXT2 systematically check all the
directories and files on the partition for lost files and errors. This can take hours on large
partitions.

But suppose you lost your wallet during a walk. Would you search the whole town for it?
No, you should only redo your walk.

With JFS1 (1990) IBM applied for the first time Transactional Database Techniques to a File
System. This database technology was earlier used by governments and financial institutions to
store and retrieve data reliably in an unstable networked environment. How does JFS works?
● All changes (transactions) in the file system structure (metadata) are logged.
● Any file (rename, create, delete etc.) transaction is only completed when logged.
● After a crash the JFS chkdsk reads the logfile to know where to search for potential errors.
● So the last intact (committed) directory structure can often be restored from the log (logredo).

With JFS you may lose individual files, but loss of complete directory structures is unlikely. Even
if a large JFS LVM volume uses several hard disks.

Dynamically Tuning the JFS Cache for Your Job Sjoerd Visser

November 13, 2009 / page 5

IBM ported the in c written version JFS2 (JFS) to OS/2 Warp Server for e Busines (WSeB)
Warp 4.5 (1999) because the HPFS and HPFS386 file systems had major limitations:

 Gordon Letwins HPFS386 code was owned by Microsoft.

 HPFS has long recovery times compared to a journaled FS like NTFS.

 HPFS has no Unicode Transformation Format (UTF) naming needed for internet.

 HPFS was designed for an earlier generation (smaller scaled) PC systems.

Limits* FAT16 HPFS HPFS386 JFS NTFS5
Partition size 2 GIB 64 GiB 64 GiB 2 TiB 16 EiB
File Size 2 GiB 2 GiB 2 GiB 2 TiB 16 EiB
Cache size 14 MiB 2 MiB 512 MiB 800 MiB dynamic

The OS/2 port of JFS introduced two new features:

 A Logical Volume Manager to do the expanding tricks on JFS volumes.

 A large JFS buffer cache, mimicking the Unix Virtual File System.

* Though the vendors often give theoretical limits, there also exist practical limits like limitations in other
drivers, the API and virtual memory address space: So the 512 MiB for the HPFS386 cache and 800 MiB
for the JFS cache are more realistic then the predicate "all physical RAM".

Dynamically Tuning the JFS Cache for Your Job Sjoerd Visser

November 13, 2009 / page 6

How do the JFS File System and Cache work?

Explaining the detailed structure of the Journaled File system is beyond the scope of this
presentation.

For details see the JFS presentations given by Steve Best on the web.

I will just focus on some major File System and Disk Caching Concepts and compare JFS
with FAT, HPFS and NTFS.

To sharpen your focus, I start with a QUIZ.

Why does a File System Cache speed up access to the hard disk?

A. Magnetic Storage is slow compared to random access memory.

B. File Systems became slower as they had more overhead.

C. The FS cache contains Frequently Used Metada.

D. The FS cache contains Frequently Used Files.

All answers are somehow true, but only one answer is crucial for classic hard disk caching.

E. The FS cache minimizes physical Disk Header Movements.

We will investigate these questions and answers theoretically and in practice..

Dynamically Tuning the JFS Cache for Your Job Sjoerd Visser

November 13, 2009 / page 7

Once at a time magnetic storage was terribly slow. Early Unix systems used tape. DOS
and even Unix ran from removable disks. So buffers became an essential part of the OS
Virtual File System and/or their drivers.

But today we have fast hard disks, chipsets, CPU's and drivers that can access the disk via
DMA nearly at bus speed. So a software cache is not needed to read an unfragmented file
fast ahead. In fact the 4-8 MiB track cache of the hard disk controller will do this for you.

DISKIO - Fixed Disk Benchmark, Version 1.18z
(C) 1994-1998 Kai Uwe Rommel
(C) 2004 madded2
Dhrystone 2.1 C benchmark routines (C) 1988 Reinhold P. Weicker
Dhrystone benchmark for this CPU: 2164987 runs/sec

Hard disk 1: 255 sides, 19457 cylinders, 63 sectors per track = 152625 MB
Drive cache/bus transfer rate: 27550 k/sec
Data transfer rate on cylinder 0: 25707 k/sec
Data transfer rate on cylinder 19455: 25274 k/sec
CPU usage by full speed disk transfers: 39%
Average data access time: 18.3 ms
Multithreaded disk I/O (4 threads): 13248 k/sec, 27% CPU usage

Realize that DISKIO reads disk sectors directly via the buffers of the HD driver, bypassing
the File System and caches. Reading raw data sequentially from the hard disk can be very fast.

Magnetic Storage is slow compared to random access memory.

Dynamically Tuning the JFS Cache for Your Job Sjoerd Visser

November 13, 2009 / page 8

File System Designed for Cache and FS design considerations

FAT8 Single user Floppy DOS 512 bytes DOS Buffers sector caching.

FAT16 16 MiB - 2 GiB partitions FAT table cache (2^16= 64 KiB + cluster limits).

HPFS OS/2 multiprogramming Compact, segmented design of FS and cache.

HPFS386 OS/2 LAN server Local user rights, more files in LAN cache.

vFAT Windows 95 client Dynamic cache to support FAT, LFN and OS.

FAT32 Windows 9x/ME Idem for FAT32x partitions and files (2^32=4 GiB).

JFS1 Multi-user AIX systems Journaled file system for AIX LVM (64 bits).

NTFS Multi-user NT systems Idem to support Unix features on Windows.

JFS2 Multi-user IBM systems 64 bits JFS independent of AIX.

As File Systems scaled up, became more generic and feature rich, the memory and CPU-
use needed to cache FS metadata increased fast, even with clever database techniques:

For this a 16 MiB JFS cache (1/8 of 128 MiB) makes little sense. JFS was designed for large
servers. If you lack RAM, CPU time or disk space, you better use HPFS (as once FAT).

Modern File Systems support large volumes, more and larger files and new features:
Logging, redundancy, long UTF File names, EAs, user rights and other file attributes. This gives
FS overhead. But they also resisted fragmentation and got faster search routines.

File Systems became slower as they got more overhead.

Dynamically Tuning the JFS Cache for Your Job Sjoerd Visser

November 13, 2009 / page 9

Why caching metadata is essential: Understand "How NTFS Reads a File"
Below is an example of what occurs when NTFS goes to read in the 1-cluster file
\Flintstone\Barney.txt.
 1. The volume's boot record is read to get the cluster address of the first cluster of the MFT.
 2. The first cluster of the MFT is read, which is used to locate all of the pieces of the MFT.
 3. MFT record 5 is read as it is predefined to be the MFT record of the root directory.
 4. Data cluster 0 of the root directory is read in and searched for "Flintstone".
 5. If "Flintstone" is not found, then at least one other data cluster of the root directory needs to be read to
find it.
 6. The MFT record for the "Flintstone" directory is read in.
 7. Data cluster 0 of the "Flintstone" directory is read in and searched for "Barney.txt".
 8. If "barney.txt" is not found, then at least one other data cluster of the "Flintstone" directory needs to be
read to find it.
 9. The MFT record for the "Barney.txt" file is read in.
10. Data cluster 0 of the "Barney.txt" file is read in.

In this worst case scenario on an unmounted volume 10 slow hard disk header
movements are needed to find and read Barney.txt.

QUIZ: Why is \Flintstone\Fred.txt approached faster?
Master File Table (MFT): A relational database that contains information about the files and directories
(inodes) of a NTFS volume.It describes file names, security identifiers, timestamps, lists of cluster
numbers, indexes, file attributes like "read only", "compressed" etc.

Source: http://files.diskeeper.com/pdf/HowNTFSreadsafile.pdf

http://files.diskeeper.com/pdf/HowNTFSreadsafile.pdf

Dynamically Tuning the JFS Cache for Your Job Sjoerd Visser

November 13, 2009 / page 10

File and Directory Caching generally means first copying the in disk or file system buffers
placed disk sectors or blocks to cache memory, from where programs can read them:

Hard Disk <1> FS or disk buffers <2 > Buffer Cache <3> Program.

So caching will always slow down the first reading of any file or directory. But as the copy from
memory to memory (step 2) using is fast, you will not notice it.

If the next I/O operation yields a cache hit, the slower steps 1 and 2 are avoided. A segmented
LRU cache will only need to update its internal book keeping in terms of cache hits and misses.

It there is a cache miss, the needed disk sector must be brought into the buffer cache. If there
are enough Free Buffers, the needed buffer is loaded in fast. As it was read in uncached.

But if there are many cache misses (COPY A B) the Free Buffers pool in the cache will be
used up fast: If A is read in fast with 10 MB/s, free buffers diminish with 20 MB/s (A+B).

A default JFS cache uses 12,5% (1/8) of physical memory up to 64 MiB.

Default MIN and MAX values for Free Buffers are 0,5% and 1% of CacheSize.

With /Cachesize:200000 and 4 KiB blocks, Free Buffers occupy between 4 and 8 MB.

So after every (8-4)/20 =0,2 seconds Free Buffers become depleted, forcing the 200 MB
cache to synchronize to free 4 MiB, as long as the 20 MB/s COPY A B job runs.

The cache overhead thus consists of sorting 20000 pointers 5 times a second and to create
enough free buffers to copy A+B to.

Cache overhead: copy all buffers to cache and cache resynchronizing

Dynamically Tuning the JFS Cache for Your Job Sjoerd Visser

November 13, 2009 / page 11

File and Directory Caching, means first copying the requested
sectors or blocks of the File System to free buffers of the buffer
cache, where programs can read and write to them:

File System <1> Buffer Cache <2> Program IO.

Use of buffers is inevitable, but when the cache runs out of free
buffers, the cache must decide which buffers can be discarded and
which buffers must be lazy written to disk.

If it does not do so, new IO (loading files, writing to disk) can only
be done in the not occupied buffers.

In Linux and Windows NT/XP, the newly read in or written to 4 KiB
buffers will be copied to and stored in virtual memory, where
they are handled as pages using fast virtual memory techniques
(unified virtual memory for files and proceses).

Buffer Cache <3> Page Cache <4> Memory Mapped IO

Cache overhead solutions

This double caching costs more CPU time, more IO cycles and more RAM as two caches
(buffer and page cache) must be kept synchronized.

If there is not enough RAM, a cached file in the Page Cache could be even be swapped to disk!
But it probably loads faster from its disk mirror in the page cache, than from the file system. For
this reason the WPS keeps its DLLs also in virtual memory (memory-mapped file).

Dynamically Tuning the JFS Cache for Your Job Sjoerd Visser

November 13, 2009 / page 12

To prevent double caching, some versions of Unix and
Linux do their IO via an unified buffer cache, where both
mapping of IO in virtual memory and the read() and write()
system calls use the same page cache.

Under OS/2, the memory of IFS driver caches are placed
in kernel memory, and are also mapped in the 4 GiB
virtual address space that processes see.

But JFS cache memory is not swapped.

Dynamically Tuning the JFS Cache for Your Job Sjoerd Visser

November 13, 2009 / page 13

The goal of any File System and Cache is to store and retrieve files fast.

Reading unfragmented data from a fast hard disk is not the problem.

The difficulty is to locate the needed disk sectors fast.

And ideally to schedule IO operations to minimize disk header movements.

A File System works best when it caches:

1. Recently used metadata, to find the disk sectors of files and directories fast.

2. Recently used Files and Directories, when they are repeatedly read or written to.

Lazy write caching, implying changes in both files and metadata, becomes very efficient when
the delayed writing (cache synchronization) is done in a way that minimizes disk header
movements:

 A postman first sorts the letters, before doing his round.

Just as a well written hard disk driver has knowledge about the disk internals (reorder the I/O
queue to do R/W access faster), a well written FS driver and its cache should have some
knowledge of the setup and drawbacks of the File System.

But cache synchronization algorithms (typically LRU) are not concerned with FS layout, but
only with time stamps. Nevertheless, as the cache sequentially reads in the needed parts of a
file, the last accessed buffers of one file will have sequential time stamps.

Moreover, the File System layout can be designed to reduce disk header movements. It can
even be optimized for specific disk cache sizes and layouts. Under HPFS and JFS this is the
case, but not under FAT.

Dynamically Tuning the JFS Cache for Your Job Sjoerd Visser

November 13, 2009 / page 14

FAT16 caching

The File Allocation Table File System originally supported diskettes running BASIC.
FAT12 formatted diskettes were cached via 512 bytes sector Buffers (BUFFERS=nn).

When used on hard disks, a lazy write disk cache kept the central 16-bit file allocation
table (FAT) and most used directory entries of up to 32 MiB FAT partitions in memory.

DOS 4 introduced disks clusters spanning 2-64 disk sectors allowing for up to 2 GIB
(64K*cluster size) FAT16 partitions, but also much slack.

Slack space: A 2 KiB file or directory entrance cannot be efficiently laid down on 32 KiB
FAT16 disk cluster: 30 KiB will be unused. The 32 bit FAT32 Table reduced the
clustersize to 4 KiB, but the FAT table grew immense (2 MiB on a 2 GiB partition).

The FAT16 table contained the filename, extension, attribute, time stamps, size and first
cluster of a file. As its records were unordered, it could not be searched fast unless fully
cached (128 KiB).

Larger files were likely to become fragmented: needing more disk header movements to
be read. And a DIR had to count all the records to measure free disk space.

Dynamically Tuning the JFS Cache for Your Job Sjoerd Visser

November 13, 2009 / page 15

OS/2 2.0 approached FAT16 via a kernel driver (other FS are installable).

The 32 bit hard disk DISKCACHE contained the 128 KiB FAT Table(s) and most
used directory entrances. It size is 48-14400 KiB.

OS/2 Long File Names (LFN) were supported as Extended Attributes in the
mostly fragmented file EA_DATA . SF.

They existed independent from the LFN of vFAT used by the 32 bit Windows 9x
FAT disk drivers.

Note that only 1-100 512 bytes BUFFERS can be placed between the disk driver
and the DiskCache. This is a bottleneck.

FAT FS <1> DOS Buffers <2> FAT Cache <3> Program IO.

eCS uses BUFFERS=90, the default is only 10 (5 KiB).

Super FAT

Dynamically Tuning the JFS Cache for Your Job Sjoerd Visser

November 13, 2009 / page 16

The 32 bit High Performance File System (HPFS) was developed for multiprogramming
on hard disks.

HPFS was said to be slower than super FAT, but this was only true for small defragged hard
disks (<100 MiB), on slow 386 processors with lack of RAM (HPFS needed 200 KiB + cache).

HPFS supported partitions up to 64 GIB with minimal slack space (512 bytes sectors). File
sizes (incl. swapper.dat) could be up to 2 GiB with minimal fragmentation .

The central 8 MiB seek center (directory band) was placed strategically in the middle of the
partition, minimizing disk header movements to the most accessed (meta)data. Here sorted
B(alanced) trees enabled fast finding of metadata.

Where the fragmented FAT table behaved like a unordered staple of A4 papers, the HPFS
seek center was hierarchically organized and approached like an series of indexed
phonebooks, so that it could find metadata fast even when minimally cached.

File names (1-254 characters) and Extended Atributes (0-64 KiB) were laid down locally
nearby the files instead of using the central FAT table and EA_DATA . SF file of super FAT.

File and directory fragmentation were prevented by using free space bitmaps in 8 MiB
allocation bands allowing for 16 Mib contiguous files.

The decentralized and redundant design (hotfixes via spare blocks) allowed for fault
tolerance at times that hardware errors and traps were common -;)

See: http://seds.org/~spider/spider/OS2/HPFS/hpfs.html

High Performance File System

Dynamically Tuning the JFS Cache for Your Job Sjoerd Visser

November 13, 2009 / page 17

The relatively small HPFS cache profited from the flat and decentralized
organization of HPFS.

For this HPFS becomes exponentially faster and more efficient than FAT16 or
FAT32 on > 100 MiB partitions, certainly when the FAT table cannot be cached
fully.

The centrally placed 8 MiB Seek Center facilitated the looking up of the disk
sectors for an previously unknown file or directory within a few disk sector reads.

Unlike the unordered FAT16 tables, that had to be fully cached (128 KiB or 256
disk sectors on a 2 GiB partition) to be usable.

As the HPFS directory paths were separately cached , the next read of a related file
Fred.txt would be done at once even with a 32 KiB cache.

As less metadata were needed in cache memory, the cache could lazy write the
cached file and metadata of many more applications.

The memory saved could be better be used for multitasking on systems with 8-16
MiB RAM.

The HPFS cache

Dynamically Tuning the JFS Cache for Your Job Sjoerd Visser

November 13, 2009 / page 18

IFS=C:\OS2\HPFS.IFS /CACHE:128 /CRECL:4 /AUTOCHECK:C

/CACHE:128 specifies the cache size in KiB (32-2048) and was defaulted by IBM to a tiny 128
KiB with 6 MiB RAM. Nowadays, with > 32 MiB RAM, you would set it at 2048, or if you never
use HPFS, just REM the HPFS.IFS statement, freeing 200 KiB + cache RAM.

/CRECL:4 specifies the maximum cache record size (a twofold of 2-64 KiB). Setting it to large
(relative to /CACHE:nn) could spoil the cache. Caching metadata is much more important!

CACHE /LAZY:ON /BUFFERIDLE:500 /MAXAGE:5000 /DISKIDLE:1000 /READAHEAD:ON

/LAZY:ON means enable Lazy Writing (recommended default: many times faster).

/BUFFERIDLE:500 buffers not used for 0,5 seconds are written to disk. The idea is that when
a buffer is accessed (cache hit), it could soon (< 0,5 s) be accessed again. When this is not
the case, the buffer is destined to be written to disk (if dirty) or goes to the pool of free buffers.

/MAXAGE:5000 forces frequently used buffers to be written to disk after max 5 seconds.

/DISKIDLE:1000 means that lazy write thread preferably waits until the disk is not accessed
for 1 sec. During heavy IO, lack of free buffers will force acting earlier.

/READAHEAD:ON The cache uses one Read Ahead thread.

The default CACHE settings seem to work well. But they were tuned for slower systems with
little RAM. For 2 MiB HPFS caches, you could increase BUFFERIDLE and MAXAGE. And
with the faster seek times of modern hard disks the DISKIDLE setting can be decreased.

 Tuning the HPFS cache

Dynamically Tuning the JFS Cache for Your Job Sjoerd Visser

November 13, 2009 / page 19

Like HPFS, JFS starts with the superblock, which contains partition information and the
way JFS is organized. It has a copy that can be used by recovery tools.

Like HPFS (allocation bands), JFS is organized in repeating units called Allocation Groups.

Segmented storage prevents extreme physical disk fragmentation.

A new JFS extent can range in size from 4 KiB to 64 GiB with 4 KiB Blocks. So if you
copy a 40 GiB file to a new JFS volume, it will be unfragmented.

The HPFS and JFS directory entries are sorted B trees. Sorted B trees are accessed in the
way you search for a name in an library catalogue.

RAM and CPU needs of JFS are much higher than HPFS (4 MiB minimal, 20 MiB workable),
as a 64 bits FS with UTF-16 support for much larger volumes and files has more overhead.

JFS needs some more disk space too: System space used by JFS on a 4 GiB data partition
was 0,15% by HPFS and 0,67% for JFS with block size 512 bytes.

But note that a WPS URL object of 40 bytes uses 4 KiB with the standard block size.

Small EA are stored in the inode, or if larger in separate blocks.

The Journaled File System

Dynamically Tuning the JFS Cache for Your Job Sjoerd Visser

November 13, 2009 / page 20

Every object (file, directory, link) in the file system is represented by an i(ndex)node #.

The inode table contains information like: file type, file size, used blocks, time stamps
(creation, last modified and acces), user rights (uid, gid) and the availability of links and
extended attributes.
G:\TEMP\test>ls -ila
total 172
 9288649302917795134 drwxrwxrwx 1 0 0 0 2009-10-27 23:59 .
11038877574429749475 drwxrwxrwx 1 0 0 0 2009-10-27 23:57 ..
 2302304912057420540 drwxrwxrwx 1 0 0 0 2009-10-27 23:59 dir
12559417848390446504 -rw-rw-rw- 1 0 0 163109 2009-07-13 00:21 file.png
 3558792758389222959 -rw-rw-rw- 1 0 0 828 2009-01-14 23:44 file.txt

Question: what counts as Total 172 in var? What are the 1 0 0 for dirs?
33308 -rw-r--r-- 1 sjoerd users 129153 Sep 20 2008 schermafdruk1.png

The file names of inodes are found in a table the parent directory. If a file is erased, its
entrance in the directory is erased.

For this a lost file can only be identified by June by its inode number!

ls -ila shows: inode number, user rights, number of links to the file, User ID, Groups ID,
time stamps, file name.

Dynamically Tuning the JFS Cache for Your Job Sjoerd Visser

November 13, 2009 / page 21

Setting the JFS cache size

JFS is loaded as follows:
DEVICE=C:\OS2\BOOT\UNICODE.SYS

IFS=C:\OS2\JFS.IFS AUTOCHECK:* /CACHE:128000 /G:0 /U:0

With /G and /U you set the Groups and User IDs (here root).

The JFS cache size (in KiB) can be very large. It is mapped
in the system arena, so its size is only limited by:

 The amount of free physical memory.

 Your Virtual Address Limit.

 System memory already occupied (PCI, video, drivers,..)

In practice I could only load JFS caches <1 GiB in RAM.
Even after trimming unused video ram (gaoption vidmem
32). Cache sizes up to 600 MiB worked fine for me.

IBM defaulted JFS cache size to 1/8 of physical memory
(max 64 MiB), so 16 MiB with 128 MIB RAM. But JFS needs
at least 20 MiB to work efficiently.

As modern eCS systems will seldom have lack of physical RAM, spending unused free
memory to the JFS cache seems reasonable. But of course the memory spent to the cache
can not be given to VPC.

Dynamically Tuning the JFS Cache for Your Job Sjoerd Visser

November 13, 2009 / page 22

JFS cache design

The JFS cache is a segmented LRU buffer cache:

Buffer: The unit to be cached is a 4 KiB JFS buffer.

All JFS IO must go through 4 KiB JFS cache buffers.

LRU: Least Recently Used Buffers are first discarded or
if dirty first written to disk by the cache synchronization
mechanism, to create Free Buffers for still uncached IO.

Segmented: implies a kind of cache hierarchy.

The cache makes a division between data and metadata.
Caching the directory and inode of a file (metadata) is
more important than the file content itself (data).

The other division is that between the by at least one cache hit justified protected buffers (up
to 2/3 of cache) and newbies (probationary buffers) that were recently read into the cache.
They could be DLLs loaded once or MPEG files played once, thus spoiling the cache.

All freshly from disk read in or any newly to the disk written file is first placed in a Free Buffer. If
this now once written to Probationary Buffer is accessed again, it promotes to the Protected
Buffer segment. But without cache hit is considered as less important and stays probational.

The Least Recently Used Probational Buffers will be first thrown out of the cache to make place
for the by uncached IO needed Free Buffers. And if more Free Buffers are needed for IO, the
LRU protected buffers are used (they also degrade to the Probational segment if slrun >slruN).

Dynamically Tuning the JFS Cache for Your Job Sjoerd Visser

November 13, 2009 / page 23

[E:\CACHEJFS.EXE /LW:8,30,6 /MINBUFFER:16000 /MAXBUFFER:32000

 SyncTime: 8 seconds
 MaxAge: 30 seconds
 BufferIdle: 6 seconds
 Cache Size: 400000 kbytes
 Min Free buffers: 16000 (64000 K)
 Max Free buffers: 32000 (128000 K)
Lazy Write is enabled

[E:\]cstats
cachesize 100000 cbufs_protected 43148
hashsize 65536 cbufs_probationary 6394
nfreecbufs 47941 cbufs_inuse 0
minfree 16000 cbufs_io 0
maxfree 32000 jbufs_protected 1565
numiolru 0 jbufs_probationary 946
slrun 44713 jbufs_inuse 0
slruN 66666 jbufs_io 0
Other 6 jbufs_nohomeok 0

JFS utilities like cstats.exe can be found at
ftp://ftp.netlabs.org/pub/openjfs/.

ftp://ftp.netlabs.org/pub/openjfs/

Dynamically Tuning the JFS Cache for Your Job Sjoerd Visser

November 13, 2009 / page 24

JFS cache settingsThe eComStation 1.2 client started the JFS driver with:

IFS=C:\OS2\JFS.IFS /LW:5,20,4 AUTOCHECK:*

But the IBM Warp Server for eBusiness server default was:

IFS=C:\OS2\JFS.IFS /LW:64,256,8 AUTOCHECK:*

Both yield a (too small) 64 MiB JFS cache on systems with 512 MiB or more memory.

[F:\]cachejfs
 SyncTime: 5 seconds
 MaxAge: 20 seconds
 BufferIdle: 4 seconds
 Cache Size: 65536 kbytes
 Min Free buffers: 327 (1308 K)
 Max Free buffers: 655 (2620 K)
Lazy Write is enabled

SyncTime is the maximal time span after which a sleeping cache must synchronize its contents.
SyncTime was 64 seconds for WSEB, but was reduced to 5 seconds on eCS. Wwhy?

MaxAge of HPFS was 5 seconds. But the larger lazy write JFS cache writes dirty buffers every
SyncTime*4 (20 on eCS, 256 on WSEB) seconds to disk, if not forced to do so earlier.

The BufferIdle setting of 4 seconds (8 with WSEB) is much larger than the 0,5 s of the smaller
HPFS cache. Probational dirty buffers not rewritten to within BufferIdle seconds must be written
to disk. If the cache is forced to synchronise (by heavy IO), the only once accessed dirty buffers
must after BufferIdle seconds be send to the lazy write thread. But if hit again within BufferIdle
seconds, they promote to the protected part of cache that writes them after MaxAge to disk.

Dynamically Tuning the JFS Cache for Your Job Sjoerd Visser

November 13, 2009 / page 25

Changes in internal cache status, like probationary buffers becoming protected, are not
implemented as memory movements. Only small entries (pointers) in the cache tables are
updated. For this reason cache synchronization overhead can be kept small even with large
caches. But never underestimate the scale of it:

A 400 000 KiB JFS cache has 100 000 entries to maintain.

[E:\]cstats
cachesize 100000 cbufs_protected 21863
hashsize 65536 cbufs_probationary 10447
nfreecbufs 64710 cbufs_inuse 0
minfree 8000 cbufs_io 0
maxfree 32000 jbufs_protected 1453
numiolru 0 jbufs_probationary 1521
slrun 23316 jbufs_inuse 0
slruN 66666 jbufs_io 0
Other 6 jbufs_nohomeok 0

Here I have mostly (64710) Free Buffers, but if the cache becomes saturated (slrun=slruN),
66666 Protected and quite a lot of Probationary buffers have to be maintained.

And when a saturated cache must suddenly read in big files, IO may increase extra, when the
cache is forced to flush dirty buffers that have not been updated (via MaxWait).

Dynamically Tuning the JFS Cache for Your Job Sjoerd Visser

November 13, 2009 / page 26

To get enough free buffers to cache large files compared to cachesize, the cache has to
synchronize. The easy to discard least recently used (LRU) probationary buffers are processed
first, eventually followed by the LRU protected buffers, until minfree < nfreebufs.

If cached IO is high (backups, io benchmarks), massive lazy writing may be forced. Many
dirty buffers in the protected segment must be written to disk (via io_buffers). But a saturated
cache will contain dirty buffers of many files scattered around the disk. So the lazy write thread
can take a long time as it cannot write the dirty buffers sequentially. Though asynchronous
randomly file IO via the lazy writing cache is much faster than synchronous (first in the IO queue,
first served) writing without a cache used by databases, swapper.dat, ini files, the scale of it
imposes a problem, that may result in a temporally freezing of the system with a large cache.

The clusters of a newly to be read
or written to the JFS cache file
are first placed in free cache
buffers (freecbufs).

The written to free buffers
become probationary buffers.

If read again or written to (cache
hit), probationary buffers promote
to the protected segment. This
most static part of the cache may
occupy up to slruN clean and
dirty buffers.

Dynamically Tuning the JFS Cache for Your Job Sjoerd Visser

November 13, 2009 / page 27

Some JFS performance issues

Speed matters, but Data Integrity and System Stability come always first.

No JFS related Trap Errors should happen.

Cache actions should be unnoticeable to the user.

Use of the lazy write cache should not give more risk of data loss.

Old data should be recovered completely after a crash.

Speed issues

In benchmarks JFS proved superior compared to JFS to HPFS and HPFS386.

But note that I used rather large JFS caches (32-800 MB). As JFS was not designed
for small systems.

Dynamically Tuning the JFS Cache for Your Job Sjoerd Visser

November 13, 2009 / page 28

No JFS related Trap Errors should happen.

The JFS driver code is executed in kernel space. So if something goes
unexpectedly wrong, you will see a trap error.

Most of the trap errors seem to have been resolved by IBM with fixes for OS/2
Warp server.

Unexpected effects brought about by new ACPI or other hardware drivers could
destabilize JFS.

As the OS/2 kernel is not any more maintained, fixing kernel related problems
is difficult.

Unexpected changes in the JFS File System, when sharing JFS with Linux are
even more risky.
It is likely that JFS on Linux code will divert from the original JFS OS/2 code, as
the needs of niche player OS/2 are neglected.

JFS will be optimized for other operating systems.

JFS on OS/2 and Linux will become different species.

Also note that a Linux LVM does not act as the OS/2 LVM.

Trap errors and data loss are likely, when JFS is approached by different
drivers in an inconsistent way.

Dynamically Tuning the JFS Cache for Your Job Sjoerd Visser

November 13, 2009 / page 29

Cache actions should be unnoticeable to the user.

In normal OS/2 practice JFS caching works transparently to the user.

But if you run Sysbench of Trevor Hemsley, you may run into trouble.

When I ran the random Cached disk read and write of Sysbench on JFS on a single core
processor, I noticed PM and WPS Desktop freezing for seconds to minutes depending on
the test and on cache size.

The Desktop was frozen. Even Watchcat and CAD handler did not respond.

After a period, OS/2 live revived as before. The Watchcat and CAD handler pop up menu´s
did appear, but time critical operations network operations could be lost.

On my dual core laptop with SMP kernel this disk activity related PM and WPS freezing did
not occur. One core seemingly "used" 99,9%, but the other kept responsive.

QUIZ: What happened? CLUES are found in the WSEB APARs:
NETBENCH TEST ON JFS CAUSES A HANG DUE TO INSUFFICIENT FREE
CACHE BUFFERS. LARGE XCOPY ON A JFS DRIVE LEADS TO A HANG.
JFS HANGS WHEN DOING I/O ON THE SERVER FROM A LARGE NUMBER
OF CLIENTS
Sadly IBM has removed the entries. But hangs were associated with
sudden heavy IO through the cache.

Dynamically Tuning the JFS Cache for Your Job Sjoerd Visser

November 13, 2009 / page 30

What happens during JFS cache
related freezing?
JFS must run a synchronizing kernel thread when
it runs out of free buffers.

It is also forced to write dirty buffers to disk.

When a single core CPU is in kernel modus, pre-
emptive multitasking is postponed.

The synchronizing thread can take minutes, when a large JFS cache (>200 MIB) is "spoiled"
by an impossible to be cached (efficiently) disk task. Or when large amounts of randomly
written data have to be lazily written to disk. So a single core system freezes, until the kernel
has done its necessary JFS job.

Please do nor reset the system before that or data loss will occur!

With large caches JFS works much better on SMP systems. One core can be occupied by JFS
kernel threads, whilst the other core can serve PM and the WPS (see picture). But for OS/2
WSEB or OS/2 4.5 single core systems "remedies" for cache related system lockups were:

Decreasing the cache size (64 Mib became the default max)

Decreasing the scheduled synchronization times.

Increasing free buffers (not mentioned).

A smaller Cache has a shorter synchronization time, but increasing the free buffer portion of
the JFS cache before doing heavy IO seems more reasonable.

Dynamically Tuning the JFS Cache for Your Job Sjoerd Visser

November 13, 2009 / page 31

Use of the lazy write cache should not give more risk of data loss.

Lazy writing dirty buffers to disk (an asynchronous write)
speeds up disk access tremendously:
● There are less disk writes to files and directories.
● Writing to disk occurs in efficient bursts (as with SCSI).

Both factors reduce the chance that the computer is
powered off during a write to essential FS structures.

Of course, the disk buffers must first be flushed before
shutting down the PC. Without CAD or shutdown you will
lose data. And probably more on larger caches with long
synchronisation times.

I certainly lost some data because of bad RAM chips, CPU
overheating, empty laptop batteries and trap errors.

But thanks to metadata logging I seldom lost complete
directories with JFS caches of 400 MB.

The picture taken of a lost \OS2 DIR was on drive F using a
32 MiB HPFS386 cache (and bad memory).

So I always keep dsync backups (on JFS of course)

Dynamically Tuning the JFS Cache for Your Job Sjoerd Visser

November 13, 2009 / page 32

How to do optimize JFS performance for your job.

[E:\]CACHEJFS.EXE /LW:8,30,6 /MINBUFFER:8000 /MAXBUFFER:32000

 SyncTime: 8 seconds

 MaxAge: 30 seconds

 BufferIdle: 6 seconds

 Cache Size: 400000 kbytes

 Min Free buffers: 8000 (32000 K)

 Max Free buffers: 32000 (128000 K)

Lazy Write is enabled

Say you want to do heavy IO: benchmarking, backup, etc.

- Would you reboot to decrease the cache size to a safe 64 MiB?

- Would you shorten the sync times?

- Would you disable lazy write?

Dynamically Tuning the JFS Cache for Your Job Sjoerd Visser

November 13, 2009 / page 33

No increasing, Min Free Buffers to 16000 (64 MB) and Max Free Buffers to 84000 (336
MB MB), reduces the to be synchronized cache portion to 64 MB, but leaves you with
plenty of useful IO buffers. See: cstats under sysbench.
[E:\]CACHEJFS.EXE /LW:8,30,6 /MINBUFFER:16000 /MAXBUFFER:84000

 SyncTime: 8 seconds
 MaxAge: 30 seconds
 BufferIdle: 6 seconds
 Cache Size: 400000 kbytes
 Min Free buffers: 16000 (64000 K)
 Max Free buffers: 84000 (336000 K)
Lazy Write is enabled

[E:\]cstats
cachesize 100000 cbufs_protected 16003
hashsize 65536 cbufs_probationary 10
nfreecbufs 53545 cbufs_inuse 0
minfree 16000 cbufs_io 30396
maxfree 84000 jbufs_protected 21
numiolru 30396 jbufs_probationary 2
slrun 16024 jbufs_inuse 0
slruN 66666 jbufs_io 0
Other 6 jbufs_nohomeok 17

Dynamically Tuning the JFS Cache for Your Job Sjoerd Visser

November 13, 2009 / page 34

Cache Stats logging

Say you have a File or Web Server then may
want to know how the cache is used.

Cstats.exe can tell you at any time how the
Cache Buffers are being used.

It does not tell you the amount of cache hits, but
regular samples show you the dynamics of the
cache. So you can tune Cache RAM and
BUFFERS.

To ease analysis I use REXX scripts that
converts the cstats output to csv-format.

The output can be imported in a spreadsheet or
database.

See: www.sjoerd-visser.demon.nl/ecs-s2/jfs.html

Dynamically Tuning the JFS Cache for Your Job Sjoerd Visser

November 13, 2009 / page 35

A small 32 MB JFS
cache soon runs out of
free buffers (yellow).

Larger JFS caches start
with more free buffers
and have more space
to keep protected
buffers that contribute
most to cache
efficiency.

Note: the amount of
protected buffers (slrun)
can grow up to slruN =
2/3 of cachesize.

Dynamically Tuning the JFS Cache for Your Job Sjoerd Visser

November 13, 2009 / page 36

Tim e (cstats every 5 s)

0

5

10

15

20

B
u

ffe
rs

 (x
 1

0
0

0
)

cachesize

cbufs_protected

cbufs_probationary

nfreecbufs

cbufs_inuse

m infree

cbufs_io

m axfree

jbufs_protected

num iolru

jbufs_probationary

slrun

jbufs_inuse

slruN

jbufs_io

O ther

jbufs_nohom eok

eC S boots from JFS . T he sm all 64 M B cache becom es quickly saturated.

During cache initialisation (T0) all buffers are still free (nfreecbufs = cachesize).

	Title
	Goals
	JFS history
	A journaled FS for AIX
	JFS on OS/2
	Quiz: Why do we cache a FS?
	Disk drivers
	FS slower
	How NTFS reads a file
	Cache overhead
	Cache overhead 2
	Dia 12
	Why caching?
	FAT16
	Super FAT
	HPFS
	HPFS cache
	Tuning HPFS
	JFS
	inodes
	JFS.IFS
	JFS memory usage
	JFS utilities
	cachejfs
	cstats
	Reading a large file
	JFS performance issues
	JFS related trap errors
	Frozen system
	JFS feezing the system
	Lazy write
	JFS settings
	Increasing free buffers
	cstats logging
	Cache size
	Dia 36

